Skip to main content
  • Review
  • Published:

Non-coding RNAs: a key to future personalized molecular therapy?

Abstract

Continual discoveries on non-coding RNA (ncRNA) have changed the landscape of human genetics and molecular biology. Over the past ten years it has become clear that ncRNAs are involved in many physiological cellular processes and contribute to molecular alterations in pathological conditions. Several classes of ncRNAs, such as small interfering RNAs, microRNAs, PIWI-associated RNAs, small nucleolar RNAs and transcribed ultra-conserved regions, are implicated in cancer, heart diseases, immune disorders, and neurodegenerative and metabolic diseases. ncRNAs have a fundamental role in gene regulation and, given their molecular nature, they are thus both emerging therapeutic targets and innovative intervention tools. Next-generation sequencing technologies (for example SOLiD or Genome Analyzer) are having a substantial role in the high-throughput detection of ncRNAs. Tools for non-invasive diagnostics now include monitoring body fluid concentrations of ncRNAs, and new clinical opportunities include silencing and inhibition of ncRNAs or their replacement and re-activation. Here we review recent progress on our understanding of the biological functions of human ncRNAs and their clinical potential.

Introduction

A non-coding RNA (ncRNA) is a functional RNA molecule that is not translated into a protein. Members of this class of molecule are involved in many cellular processes and include highly abundant and functionally important RNAs, such as transfer RNA (tRNA) and ribosomal RNA (rRNA), as well as small interfering RNAs (siRNAs), microRNAs (miRNAs), PIWI-associated RNAs (piRNAs), small nucleolar RNAs (snoRNAs), promoter-associated RNAs (PARs) and the recently identified telomere specific small RNAs (tel-sRNAs). Moreover, the recent demonstration that other ncRNAs, the ultraconserved genes or transcribed ultraconserved regions (T-UCRs) [1], are involved in human carcinogenesis suggests that the broad family of ncRNAs contributes to molecular alterations in several pathological conditions.

miRNAs are a conserved class of non-coding RNAs that regulate the translation of mRNAs (messenger RNAs) by inhibiting ribosome function, decapping the 5' cap structure, deadenylating the poly(A) tail and degrading target mRNAs [2]. miRNAs are involved in mechanisms of gene regulation in both normal and diseased conditions and have a role during development, regulation of cell proliferation and apoptosis. The first miRNAs were identified in the nematode Caenorhabditis elegans as small RNAs that interacted with the 3' untranslated region (UTR) of the lin-14 mRNA to inhibit its expression [3]. miRNAs are single-stranded RNAs 19 to 24 nucleotides in length generated through a complex maturation process [4, 5] (Figure 1). miRNAs bind mostly to mRNA segments originating from the 3' UTRs of genes [6], but the mechanism of translational repression is only partially understood.

Figure 1
figure 1

Schematic overview of miRNA processing and functions in cancer. Transcription from miRNA genes is under the regulation of transcription factors (TF) that respond to multiple signals and can also be epigenetically controlled. miRNA genes are transcribed by RNA polymerase II to produce a long nucleotide sequence, the pri-miRNA, which is cleaved by Drosha, a RNAse III endonuclease that recognizes internal hairpin structures. The resulting miRNA precursors (pre-miRNAs) of approximately 70 nucleotides are actively exported by Exportin-5 into the cytoplasm. Once in the cytoplasm, the pre-miRNAs are further digested by Dicer (another RNAse III endonuclease), which yields 21 to 22 nucleotide dsRNAs with two nucleotide overhangs (the miRNA* species is a rare non-miRNA cleavage product). Single strands from these dsRNAs associate with several members of the Argonaute (AGO) protein family to form the RNA induced silencing complex (RISC). The mRNA segments that miRNAs bind seem to be mostly in the 3' UTRs. Overexpression (up arrow) of a miRNA could result in downregulation of a tumor suppressor, or underexpression (down arrow) of a miRNA could lead to upregulation of an oncogene. These events thus promote cell proliferation, decrease apoptosis and stimulate angiogenesis, leading to tumorigenesis.

siRNAs are small RNAs, 21 to 22 nucleotides long, produced by Dicer cleavage of complementary dsRNA duplexes. siRNAs form complexes with Argonaute proteins and are involved in gene regulation, transposon control and defense against viruses.

piRNAs, 24 to 30 nucleotides in length, are produced by a Dicer-independent mechanism, associate with Piwi-class Argonaute proteins and are principally restricted to the germline and bordering somatic cells. piRNAs are important for transposon control [7, 8] and regulate chromatin state [9]. A recent study suggests that an antisense RNA may trigger transcriptional silencing of a partner sense tumor suppressor gene; this effect occurs both in cis and in trans and is Dicer-independent. The biochemical mediators of this silencing involve a Piwi-like protein, and their role in mammals is just beginning to be understood [5, 10]. In zebrafish, piRNAs have been implicated in germ cell maintenance and many of them were mapped to transposons, suggesting that they have a role in silencing repetitive elements in vertebrates [11]. At the moment, no relationships between piRNAs and diseases have yet been discovered.

snoRNAs are small RNA molecules, approximately 60 to 300 nucleotides long, which generally serve as guides for the catalytic modification of selected ribosomal RNAs [12, 13]. In vertebrates, most snoRNAs have been shown to reside in introns of protein-coding host genes and are processed out of the excised introns. Many snoRNAs have been described as retrogenes [14]. Some snoRNA is processed to a small RNA that can function like a miRNA [15].

PARs encompass a suite of long and short RNAs, including promoter-associated small RNAs (PASRs) and transcriptional initiation RNAs, that overlap promoter regions. Their function is so far unknown but they may possibly regulate transcription, as exogenous PASRs have been observed to reduce expression of genes with homologous promoter sequences [16].

tel-sRNAs in mouse embryonic stem cells are approximately 24 nucleotides long, Dicer-independent, and 2'-O-methylated at the 3' terminus. They are asymmetric, with specificity for G-rich telomere strands, are evolutionarily conserved from protozoa to mammals, and they may have a role in telomere maintenance [17].

Ultraconserved region (UCR) sequences are longer than 200 nucleotides in the genomes of human, mouse and rat. These are DNA sequences absolutely conserved, showing 100% homology among species with no insertions nor deletions [18]. UCRs can be located at fragile sites and genomic regions affected in various cancers called cancer-associated genomic regions. Genome-wide profiling has revealed that UCRs are differentially expressed in cancer and leukemia [1, 19].

Here, we discuss the basic mechanisms of action of human ncRNAs and review their clinical impact, including their emerging roles in the pathogenesis of cancer, leukemia and other diseases. We then focus on recent progress and future directions in drug development using the 'ncRNA strategy'. The identification of ncRNAs, in particular miRNAs and their respective targets, provides a host of potential biomarkers and novel therapeutic molecular tools.

snoRNAs and disease

Several studies have shown an association between snoRNAs and various diseases, including cancer. Prader-Willi syndrome (PWS) is a congenital disease that is caused by the loss of paternal gene expression from a maternally imprinted region on chromosome 15. The SNORD115 snoRNA (also called HBII-52) shows sequence complementarities to the alternatively spliced exon Vb of the serotonin receptor 5-HT2C, located on chromosome X. HBII-52 regulates alternative splicing of 5-HT2C by binding to a silencing element in exon Vb. PWS patients do not express HBII-52, so in this case the snoRNA seems to regulate the processing of an mRNA located on a different chromosome [20]. Furthermore, another study related to PWS [21] demonstrated that deletion of Snord116 (also called Pwcr1 or MBII-85) causes growth deficiency and hyperphagia in mice, revealing a novel role for an ncRNA in growth and feeding regulation. snoRNAs have also been implicated in cancer development. The U50 snoRNA acts as a tumor suppressor in human prostate cancer [22] and in the development and/or progression of breast cancer [23].

Ultraconserved regions

There are 481 UCRs longer than 200 bases in the genomes of human, mouse and rat [18]. Many of these elements have been shown to have tissue-specific enhancer activity [24, 25], and another subset of ultraconserved elements has been shown to be associated with control of splicing regulators by alternative splicing and nonsense-mediated decay [26]. The functional importance of UCRs has been emphasized by genome-wide profiling, which revealed distinct UCR signatures in human leukemias and carcinomas. Calin et al. [1] have shown that some UCRs, whose expression may be regulated by miRNAs, are abnormally expressed in human chronic lymphocytic leukemia (CLL), and that the inhibition of an overexpressed UCR induces apoptosis in colon cancer cells. The correlation between the expression of UCRs and miRNAs in CLL patients raised the possibility of functional pathways in which two or more types of ncRNAs interact. This implication may support a model in which both coding and non-coding genes are involved and cooperate in human tumorigenesis.

miRNAs and disease

miRNAs in leukemia

The role of miRNA in cancer was first discovered in leukemia. Calin et al. [27] reported evidence for the role of miRNAs in the pathogenesis of CLL: deletions and/or downregulation of miR-15a and miR-16-1 at 13q14 were associated with CLL. Cimmino et al. [28] demonstrated that this cluster can regulate the expression of the B-cell lymphoma 2 (BCL-2) oncogene. Other relevant alterations of miRNAs in CLL include downregulation of miR-181a, let-7a, miR-30d, miR-150 and miR-92 [29] and overexpression of miR-155. In Table 1 are shown the most important miRNAs associated with leukemia and hematological diseases. For example, miRNAs in the miR17-92 cluster are commonly amplified in B-cell lymphoma patients and, together with miR-155, they were among the earliest ncRNAs to be linked with cancer [28].

Table 1 Relevant miRNAs associated with leukemia

miRNA expression signatures have revealed differences between acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) [30]. Recently, specific miRNA signatures were correlated with karyotype alterations in AML: the main observation was that the t(15;17) translocation had a distinctive signature including the upregulation of a subset of miRNAs located in the human 14q32 imprinted domain. In another study, Garzon and colleagues [31] reported miRNA signatures associated with cytogenetics and prognosis of AML, with molecular abnormalities such as t(11q23), trisomy 8 and internal tandem duplications in the FLT3 receptor tyrosine kinase gene. Downregulation of miR-221 and miR-222 was observed in AML [32]. Bueno et al. [33] revealed a new dimension to the regulation of v-Abl Abelson murine leukemia viral oncogene homolog 1 (ABL1) expression by demonstrating that ABL1 is a direct target of miR-203. miR-203 is silenced by genetic and epigenetic mechanisms in hematopoietic malignancies expressing either ABL1 or BCR-ABL1. Restoration of miR-203 expression reduces ABL1 and BCR-ABL1 levels and inhibits cell proliferation. Venturini and co-workers [34] have shown the expression of the miR-17-92 polycistron in CD34+ cells in chronic myelogenous leukemia and the regulation of this cluster by BCR-ABL1 and c-MYC.

miRNAs in solid cancers

Immediately after the first reports on the involvement of miRNAs in leukemia and lymphoma, a flurry of reports unveiled a role for miRNAs in solid cancers. The availability of high-throughput techniques for miRNA profiling allowed a detailed investigation of many cancer types. These studies immediately showed that miRNAs are differentially expressed in normal and tumor samples and can be used to classify tumors of different origins [35, 36]. Table 2 shows a summary of known miRNAs correlated with solid cancers.

Table 2 Overview of prominent miRNAs associated with solid cancers

Some miRNAs that had been earlier characterized in leukemia were found to be commonly overexpressed in solid cancers: miR-17-5p, miR-20a, miR-21, miR-92, miR-106a, miR-107, miR-146, miR-155, miR-181 and miR-221/222 [36]. Other miRNAs were characterized in relation to specific tumor types. For example, miR-21 was highly expressed in breast tumors [37] and a risk variant of a miR-125b binding site in the bone morphogenetic protein receptor type IB gene (BMPR1B) was also associated with breast cancer pathogenesis [38, 39]. The overexpressed miR-106b/93/25 cluster modulated an anti-apoptotic response after TGF-β stimulation mediated by BCL2-like 11 (BIM) [40]. Various studies on pancreatic cancer highlighted significant differences between tumors and chronic pancreatitis, normal pancreas and pancreatic cell lines. Pancreatic tumors have a characteristic miRNA profile; a pancreatic ductal adenocarcinoma-related miRNA signature was defined [41]. In a study on 65 resected pancreatic ductal adenocarcinomas with matched benign adjacent pancreas by Bloomston et al. [42], miR-196a was associated with poor survival. Several studies have shown that specific miRNAs are aberrantly expressed in malignant hepatocellular carcinoma compared with normal hepatocytes [43, 44]. The altered expression of some miRNAs has been associated with particular risk factors, such as hepatitis B virus infection or alcohol use [44]. Many of these miRNAs are upregulated in hepatocellular carcinoma as compared with normal thyroid cells and hyperplastic nodules [45].

miRNAs as oncogenes and tumor suppressors

By targeting and controlling the expression of mRNA, miRNAs can control highly complex signal-transduction pathways and other biological pathways. The biological roles of miRNAs in cancer suggest a correlation with prognosis and therapeutic outcome. A study [46] demonstrated that more than 50% of miRNA genes are located in cancer-associated genomic regions or in fragile sites, suggesting that miRNAs may be more important in the pathogenesis of human cancers than previously thought. miRNAs are also involved in advanced stages of tumor progression, which underlines their roles as metastasis activators or suppressors.

There is emerging evidence that some miRNAs can function as either oncogenes or tumor suppressors. Those miRNAs whose expression is increased in tumors may be considered as oncogenes - also called 'oncomiRs' - which promote tumor development by inhibiting tumor suppressor genes and/or genes controlling cell differentiation or apoptosis.

The miR-17-92 cluster is an miRNA polycistron located at chromosome 13q31, a genomic locus that is amplified in lung cancer and in several kinds of lymphoma, including diffuse large B-cell lymphoma. This cluster has been found to be regulated by c-MYC, an important transcription factor that is overexpressed in many human cancers [47].

Microarray analysis revealed that miR-221, miR-21 and miR-181a/b/c are strongly upregulated in glioblastoma samples compared with normal brain controls [48]. The data suggested that these miRNAs may act as anti-apoptotic factors in human malignant disease. In several types of lymphomas, including Burkitt's lymphoma, the expression of miR-155 is increased [49]. Furthermore, miR-155 is located in the only phylogenetically conserved region of the B-cell receptor inducible (BIC) gene, suggesting that miR-155 may be responsible for BIC's oncogenic activity [50].

Conversely, underexpressed miRNAs in cancers, such as some members of the let-7 family, may function as tumor suppressor genes by regulating oncogenes and/or genes that control cell differentiation or apoptosis. Several studies indicate that the RAS oncogene is a direct target of let-7, which negatively regulates RAS by pairing to its 3' UTR for translational repression, and some recent studies have focused on let-7 miRNA binding site polymorphisms in the KRAS 3' UTR that have been associated with reduced survival in oral cancers [51]. Other miRNAs that have a potential role as tumor suppressors include miR-15 and miR-16, which induce apoptosis by targeting the mRNAs for the anti-apoptotic gene B-cell lymphoma 2 (BCL-2) [28], myeloid cell leukemia sequence 1 (MCL1), cyclin D1 (CCND1) and wingless-type MMTV integration site family member 3A (WNT3A) [52]. Downregulation of these miRNAs has been reported in CLL, pituitary adenomas and prostate carcinoma. Restoration of miR-29b in AML cells induces apoptosis and dramatically reduces tumorigenicity in a xenograft leukemia model: this study also indicated that miR-29b targets apoptosis, cell cycle and proliferation pathways [31].

miR-221 and miR-222 are two highly similar miRNAs whose upregulation has been recently described in several types of human tumors and for which an oncogenic role was explained by the discovery of their target p27, a key cell cycle regulator. The ectopic overexpression of miR-221 is able, on its own, to confer a high growth advantage to tumors derived from the LNCaP cell line in severe combined immunodeficient mice [53]. In line with these results, treatment of established subcutaneous tumors derived from the highly aggressive PC3 cell line with the anti-miR-221/222 antagomiR (an anti-miRNA conjugated to cholesterol) reduced tumor growth by increasing expression of the cyclin-dependent kinase inhibitor p27 [53]. These findings suggest that modulating levels of let-7, miR-15, miR-16, miR-221/222 or miR-29b might be of therapeutic potential in various different types of cancers.

miRNAs in tumor invasion and metastasis

The first description of a miRNA in relation to tumor invasion and metastasis was by Ma et al. [54], who identified miR-10b upregulation in metastatic breast cancer cells with respect to the primary tumors. miR-10b was expressed in breast cancer in the following way: downregulated in cancer when compared with normal breast [32] but overexpressed in metastatic cancer when compared with non-metastatic tumors [54]. Subsequently, Huang and colleagues [55] identified two miRNAs, miR-373 and miR-520c, that promote cancer cell migration and invasion in vitro and in vivo by blocking the adhesion molecule CD44. A significant upregulation of miR-373 and negative correlation with CD44 expression was found in breast cancer patients with metastasis.

Recently, much interest has been focused on the role of miRNAs in the maintenance of the so-called 'cancer stem cells'. Human breast tumors contain a breast cancer stem cell (BCSC) population with properties reminiscent of normal stem cells. Three miRNA clusters, miR-200c/141, miR-200b/200a/429 and miR-183/96/182, are downregulated in human BCSCs, normal human and murine mammary stem/progenitor cells and embryonic carcinoma cells. miR-200c modulates expression of B lymphoma Mo-MLV insertion region 1 homolog (BMI1), an essential protein for the self-renewal of adult stem cells. miR-200c suppresses normal mammary outgrowth in vivo and tumorigenicity of human BCSCs. The coordinated downregulation of these miRNA clusters, and the analogous regulation of clonal expansion by miR-200c, provides a molecular link that connects BCSCs to normal stem cells [56].

From in vitrofindings to clinical biomarkers and therapies

Because of their links to pathological conditions and, in particular, cancer development and progression, miRNAs and other ncRNAs might become useful biomarkers for diagnostic purposes. ncRNA expression levels can be determined by in situ hybridization, for example on a tumor section and its normal adjacent counterparts. Mature-miRNA-specific stem loop RT-PCR is an alternative detection system for very short ncRNAs. Recently, deep-sequencing technologies, such as SOLiD (Applied Biosystems, Foster City, USA) or Genome Analyzer (Illumina, San Diego, USA), have become available for high-throughput detection of ncRNAs.

The key question is how to translate the molecular signatures determined in the laboratory to the clinical setting. As described above, several studies have identified associations of miRNA with disease prognosis, survival and mortality in biopsies (in pancreatic cancer [42] and colon cancer [57]). A possible innovative approach for early detection is represented by the determination of circulating miRNAs in plasma [58] or urine. In an application of this approach, Tanaka et al. [58] have shown that miR-92a levels are decreased in the plasma of leukemia patients and suggested the ratio in plasma of miR-92a to miR-638 (the latter is stably expressed in human plasma) as a tool for the clinical detection of leukemia. Differential expression of miRNAs in plasma of patients with colorectal cancer has also been proposed as a basis for screening [59].

Non-oncological disciplines could also benefit from measuring circulating ncRNAs. For example, the plasma concentration of miR-208 might be a useful indicator of myocardial injury [60]. Plasma miRNAs and other circulating or secreted ncRNAs therefore represent potential novel biomarkers for early detection of various pathological conditions.

Therapeutic silencing and inhibition of ncRNAs

The fundamental roles of miRNAs in development, differentiation and malignancy suggest that this class of molecules are potential targets for novel therapeutics. Antisense oligonucleotide approaches, used for inhibition, and siRNA-like technologies, used for replacement, are currently being explored for therapeutic modulation of miRNAs.

There are currently several approaches to silencing ncRNAs (Table 3). Most of these methods have been applied to miRNAs, the class of ncRNAs that currently holds the highest potential for clinical applications. Specific knockdown of miRNAs by anti-miRNA oligonucleotides (AMOs), double-strand miRNA mimetics and overexpression of miRNA duplexes have been conducted in vitro and in vivo (Table 4). AntagomiRs have been found capable of inhibiting specific miRNAs in mouse models. RNase H-based AMOs, which work primarily in the nucleus, may be useful for targeting polycistronic pri-miRNAs, such as the miR-17-92 cluster [61]. Elmen et al. [62] showed that systemic administration of 16-nucleotide unconjugated locked nucleic acid (LNA)-AMO complementary to the 5' end of miR-122 leads to specific, dose-dependent silencing of miR-122 with no hepatotoxicity in mice. Another study from the same group demonstrated that the simple systemic delivery of an unconjugated LNA-AMO effectively antagonizes the liver-expressed miR-122 in non-human primates. Acute administration by intravenous injections of 3 or 10 mg/kg LNA-AMO to African green monkeys resulted in uptake of the LNA-AMO in the cytoplasm of primate hepatocytes and formation of stable heteroduplexes between the LNA-AMO and miR-122 [63]. This route seems attractive for in vivo applications that are inaccessible to RNA interference technology, such as inhibition of oncogenic miRNAs.

Table 3 Methodological characteristics of chemical and biological therapeutic tools*
Table 4 Overview of in vivo delivery systems for snoRNAs and miRNAs*

Strategies based on synthetic miRNAs may also open interesting avenues. Recently, Tsuda et al. [64, 65] designed and developed synthetic miRNAs corresponding to duplex miRNAs by introducing 3-nucleotide loops in GU-rich regions of the 3' UTR sequence of the glioma-associated antigen-1 (Gli-1) gene. They found that one of these (Gli-1-miRNA-3548) and its corresponding duplex (Duplex-3548) inhibited proliferation of Gli-1+ ovarian and pancreatic tumor cells.

An alternative to chemically modified anti-ncRNA oligonucleotides is offered by de novo engineered ncRNA inhibitors that can be exogenously expressed in cells. These 'miRNA sponges' are competitive inhibitors to transcripts expressed from strong promoters, containing multiple, tandem binding sites of an miRNA of interest. Sponges inhibit miRNAs with a complementary heptameric seed, such that a single sponge can be used to block an entire miRNA family with the same seed. Fluorescent reporter genes can be used to identify and sort the treated cells [66]. Another route to therapeutic targeting of ncRNAs, in particular miRNAs, could be represented by inhibition of Drosha, Dicer or other components in the maturation pathway. This method, stepping into a pleiotropic physiological pathway, may, however, be difficult to make specific in its therapeutic effect.

Therapeutic replacement or re-activation of ncRNAs

When ncRNA activity is lost in affected cells, an alternative therapeutic strategy is needed. Here the approach is represented by the 'replacement' of defective or absent RNA effectors. An example of such an approach is the use, as described earlier for the miR-29b tumor suppressor, of synthetic oligonucleotides, in this particular case aimed at improving treatment response in AML [31]. Gene therapy approaches for therapeutic miRNA replacement hold considerable potential. Modified adenovirus or adeno-associated virus vectors have been effective for gene delivery into tissues. Nevertheless, a study [67] has also shown that such an approach can cause fatality in mice, possibly resulting from oversaturation of the cellular miRNA/short hairpin RNA pathway (shRNA; a short sequence of RNA that makes a tight hairpin turn and can be used to silence gene expression). Lentiviral delivery of short hairpin RNAs is another system for the delivery of shRNA constructs (controlled by either RNA polymerase II or III promoters) designed to mimic the pri-miRNA by including the miRNA flanking sequence into the shRNA stem [68, 69]. The multi-inlet focusing technique used for the Bcl-2 antisense deoxyoligonucleotide [70] can be extended to condense miRNA and overcome the challenge of limited transfection efficiency faced by delivery of 'naked' miRNAs. Moreover, epigenetic modifications of miRNAs, such as methylation, suggest the use of epigenetic therapy with drugs that modulate DNA methylation or histone deacetylation. Activation of tumor suppressor miRNAs, such as miR-127, by chromatin-modifying drugs may inhibit tumor growth through downregulation of their target oncogenes [71].

Conclusions and perspectives

ncRNAs represent a novel kind of human post-transcriptional regulatory tool. They can specifically target different genes, often in a one-to-many manner. Fine-tuning the level of a single ncRNA might therefore affect many pathways in a pleiotropic manner. Several studies have contributed to our understanding of the functions of ncRNAs and of their impact on the pathogenesis of complex diseases. Abnormal miRNA expression is now regarded as an intrinsic feature of cancer growth and progression. These observations highlight the clinical potential of ncRNAs as biomarkers for diagnosis, prognosis and prediction of therapeutic outcome. Because of the significant impact of miRNAs, it would be useful to develop a personalized expression dataset such as a 'molecular diagnostic database'. The new deep sequencing technologies might here provide the ability to translate laboratory potential into clinical practice. Inhibition and re-activation of ncRNAs will then be the final steps in this discovery chain, leading to a therapeutic approach. Engineered synthetic miRNAs could be custom-applied to specifically regulate gene expression based on the patient's genomic profile.

Abbreviations

ABL1:

v-abl Abelson murine leukemia viral oncogene homolog 1

AML:

acute myeloid leukemia

AMO:

anti-miRNA oligonucleotide

BCL-2 :

B-cell lymphoma 2

BCSC:

breast cancer stem cell

BIC :

B-cell receptor inducible

CLL:

chronic lymphocytic lymphoma

dsRNA:

double stranded RNA

LNA:

locked nucleic acid

miRNA:

microRNA

ncRNA:

non-coding RNA

PAR:

promoter-associated RNA

PASR:

promoter-associated small RNA

piRNA:

PIWI-associated RNA

pre-miRNA:

precursor miRNA

pri-miRNA:

primary miRNA

RISC:

RNA induced silencing complex

shRNA:

small hairpin RNA

siRNA:

small interfering RNA

snoRNA:

small nucleolar RNA

tel-sRNA:

telomere-specific small RNA

UCR:

ultraconserved region

UTR:

untranslated region.

References

  1. Calin GA, Liu CG, Ferracin M, Hyslop T, Spizzo R, Sevignani C, Fabbri M, Cimmino A, Lee EJ, Wojcik SE, Shimizu M, Tili E, Rossi S, Taccioli C, Pichiorri F, Liu X, Zupo S, Herlea V, Gramantieri L, Lanza G, Alder H, Rassenti L, Volinia S, Schmittgen TD, Kipps TJ, Negrini M, Croce CM: Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell. 2007, 12: 215-229. 10.1016/j.ccr.2007.07.027.

    Article  PubMed  Google Scholar 

  2. Filipowicz W, Bhattacharyya SN, Sonenberg N: Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?. Nat Rev Genet. 2008, 9: 102-114. 10.1038/nrg2290.

    Article  PubMed  Google Scholar 

  3. Lee RC, Feinbaum RL, Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993, 75: 843-854. 10.1016/0092-8674(93)90529-Y.

    Article  PubMed  Google Scholar 

  4. Rana TM: Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol. 2007, 8: 23-36. 10.1038/nrm2085.

    Article  PubMed  Google Scholar 

  5. Peters L, Meister G: Argonaute proteins: mediators of RNA silencing. Mol Cell. 2007, 26: 611-623. 10.1016/j.molcel.2007.05.001.

    Article  PubMed  Google Scholar 

  6. Doench JG, Sharp PA: Specificity of microRNA target selection in translational repression. Genes Dev. 2004, 18: 504-511. 10.1101/gad.1184404.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ: Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell. 2007, 128: 1089-1103. 10.1016/j.cell.2007.01.043.

    Article  PubMed  Google Scholar 

  8. Grimson A, Srivastava M, Fahey B, Woodcroft BJ, Chiang HR, King N, Degnan BM, Rokhsar DS, Bartel DP: Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature. 2008, 455: 1193-1197. 10.1038/nature07415.

    Article  PubMed  Google Scholar 

  9. Malone CD, Hannon GJ: Small RNAs as guardians of the genome. Cell. 2009, 136: 656-668. 10.1016/j.cell.2009.01.045.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yu W, Gius D, Onyango P, Muldoon-Jacobs K, Karp J, Feinberg AP, Cui H: Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature. 2008, 451: 202-206. 10.1038/nature06468.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Houwing S, Kamminga LM, Berezikov E, Cronembold D, Girard A, Elst van den H, Filippov DV, Blaser H, Raz E, Moens CB, Plasterk RH, Hannon GJ, Draper BW, Ketting RF: A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in zebrafish. Cell. 2007, 129: 69-82. 10.1016/j.cell.2007.03.026.

    Article  PubMed  Google Scholar 

  12. Kiss T: Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell. 2002, 109: 145-148. 10.1016/S0092-8674(02)00718-3.

    Article  PubMed  Google Scholar 

  13. Bachellerie JP, Cavaille J, Huttenhofer A: The expanding snoRNA world. Biochimie. 2002, 84: 775-790. 10.1016/S0300-9084(02)01402-5.

    Article  PubMed  Google Scholar 

  14. Luo Y, Li S: Genome-wide analyses of retrogenes derived from the human box H/ACA snoRNAs. Nucleic Acids Res. 2007, 35: 559-571.

    PubMed  Google Scholar 

  15. Ender C, Krek A, Friedlander MR, Beitzinger M, Weinmann L, Chen W, Pfeffer S, Rajewsky N, Meister G: A human snoRNA with microRNA-like functions. Mol Cell. 2008, 32: 519-528. 10.1016/j.molcel.2008.10.017.

    Article  PubMed  Google Scholar 

  16. Taft RJ, Kaplan CD, Simons C, Mattick JS: Evolution, biogenesis and function of promoter-associated RNAs. Cell Cycle. 2009, 8: 2332-2338.

    Article  PubMed  Google Scholar 

  17. Cao F, Li X, Hiew S, Brady H, Liu Y, Dou Y: Dicer independent small RNAs associate with telomeric heterochromatin. RNA. 2009, 15: 1274-1281. 10.1261/rna.1423309.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bejerano G, Pheasant M, Makunin I, Stephen S, Kent WJ, Mattick JS, Haussler D: Ultraconserved elements in the human genome. Science. 2004, 304: 1321-1325. 10.1126/science.1098119.

    Article  PubMed  Google Scholar 

  19. Rossi S, Sevignani C, Nnadi SC, Siracusa LD, Calin GA: Cancer-associated genomic regions (CAGRs) and noncoding RNAs: bioinformatics and therapeutic implications. Mamm Genome. 2008, 19: 526-540. 10.1007/s00335-008-9119-8.

    Article  PubMed  Google Scholar 

  20. Kishore S, Stamm S: The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C. Science. 2006, 311: 230-232. 10.1126/science.1118265.

    Article  PubMed  Google Scholar 

  21. Ding F, Li HH, Zhang S, Solomon NM, Camper SA, Cohen P, Francke U: SnoRNA Snord116 (Pwcr1/MBII-85) deletion causes growth deficiency and hyperphagia in mice. PLoS ONE. 2008, 3: e1709-10.1371/journal.pone.0001709.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dong XY, Rodriguez C, Guo P, Sun X, Talbot JT, Zhou W, Petros J, Li Q, Vessella RL, Kibel AS, Stevens VL, Calle EE, Dong JT: SnoRNA U50 is a candidate tumor-suppressor gene at 6q14.3 with a mutation associated with clinically significant prostate cancer. Hum Mol Genet. 2008, 17: 1031-1042. 10.1093/hmg/ddm375.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dong XY, Guo P, Boyd J, Sun X, Li Q, Zhou W, Dong JT: Implication of snoRNA U50 in human breast cancer. J Genet Genomics. 2009, 36: 447-454. 10.1016/S1673-8527(08)60134-4.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pennacchio LA, Ahituv N, Moses AM, Prabhakar S, Nobrega MA, Shoukry M, Minovitsky S, Dubchak I, Holt A, Lewis KD, Plajzer-Frick I, Akiyama J, De Val S, Afzal V, Black BL, Couronne O, Eisen MB, Visel A, Rubin EM: In vivo enhancer analysis of human conserved non-coding sequences. Nature. 2006, 444: 499-502. 10.1038/nature05295.

    Article  PubMed  Google Scholar 

  25. Bejerano G, Lowe CB, Ahituv N, King B, Siepel A, Salama SR, Rubin EM, Kent WJ, Haussler D: A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature. 2006, 441: 87-90. 10.1038/nature04696.

    Article  PubMed  Google Scholar 

  26. Ni JZ, Grate L, Donohue JP, Preston C, Nobida N, O'Brien G, Shiue L, Clark TA, Blume JE, Ares M: Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay. Genes Dev. 2007, 21: 708-718. 10.1101/gad.1525507.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM: Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2002, 99: 15524-15529. 10.1073/pnas.242606799.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM: miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA. 2005, 102: 13944-13949. 10.1073/pnas.0506654102.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fulci V, Chiaretti S, Goldoni M, Azzalin G, Carucci N, Tavolaro S, Castellano L, Magrelli A, Citarella F, Messina M, Maggio R, Peragine N, Santangelo S, Mauro FR, Landgraf P, Tuschl T, Weir DB, Chien M, Russo JJ, Ju J, Sheridan R, Sander C, Zavolan M, Guarini A, Foa R, Macino G: Quantitative technologies establish a novel microRNA profile of chronic lymphocytic leukemia. Blood. 2007, 109: 4944-4951. 10.1182/blood-2006-12-062398.

    Article  PubMed  Google Scholar 

  30. Mi S, Lu J, Sun M, Li Z, Zhang H, Neilly MB, Wang Y, Qian Z, Jin J, Zhang Y, Bohlander SK, Le Beau MM, Larson RA, Golub TR, Rowley JD, Chen J: MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc Natl Acad Sci USA. 2007, 104: 19971-19976. 10.1073/pnas.0709313104.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Garzon R, Liu S, Fabbri M, Liu Z, Heaphy CE, Callegari E, Schwind S, Pang J, Yu J, Muthusamy N, Havelange V, Volinia S, Blum W, Rush LJ, Perrotti D, Andreeff M, Bloomfield CD, Byrd JC, Chan K, Wu LC, Croce CM, Marcucci G: MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood. 2009, 113: 6411-6418. 10.1182/blood-2008-07-170589.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Spizzo R, Nicoloso MS, Croce CM, Calin GA: SnapShot: microRNAs in cancer. Cell. 2009, 137: 586-586.e1. 10.1016/j.cell.2009.04.040.

    Article  PubMed  Google Scholar 

  33. Bueno MJ, Perez de Castro I, Gomez de Cedron M, Santos J, Calin GA, Cigudosa JC, Croce CM, Fernandez-Piqueras J, Malumbres M: Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell. 2008, 13: 496-506. 10.1016/j.ccr.2008.04.018.

    Article  PubMed  Google Scholar 

  34. Venturini L, Battmer K, Castoldi M, Schultheis B, Hochhaus A, Muckenthaler MU, Ganser A, Eder M, Scherr M: Expression of the miR-17-92 polycistron in chronic myeloid leukemia (CML) CD34+ cells. Blood. 2007, 109: 4399-4405. 10.1182/blood-2006-09-045104.

    Article  PubMed  Google Scholar 

  35. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR: MicroRNA expression profiles classify human cancers. Nature. 2005, 435: 834-838. 10.1038/nature03702.

    Article  PubMed  Google Scholar 

  36. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM: A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA. 2006, 103: 2257-2261. 10.1073/pnas.0510565103.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY: MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res. 2008, 18: 350-359. 10.1038/cr.2008.24.

    Article  PubMed  Google Scholar 

  38. Saetrom P, Biesinger J, Li SM, Smith D, Thomas LF, Majzoub K, Rivas GE, Alluin J, Rossi JJ, Krontiris TG, Weitzel J, Daly MB, Benson AB, Kirkwood JM, O'Dwyer PJ, Sutphen R, Stewart JA, Johnson D, Larson GP: A risk variant in an miR-125b binding site in BMPR1B is associated with breast cancer pathogenesis. Cancer Res. 2009, 69: 7459-7465. 10.1158/0008-5472.CAN-09-1201.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bandres E, Cubedo E, Agirre X, Malumbres R, Zarate R, Ramirez N, Abajo A, Navarro A, Moreno I, Monzo M, Garcia-Foncillas J: Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer. 2006, 5: 29-10.1186/1476-4598-5-29.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I, Iliopoulos D, Pilozzi E, Liu CG, Negrini M, Cavazzini L, Volinia S, Alder H, Ruco LP, Baldassarre G, Croce CM, Vecchione A: E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell. 2008, 13: 272-286. 10.1016/j.ccr.2008.02.013.

    Article  PubMed  Google Scholar 

  41. Szafranska AE, Davison TS, John J, Cannon T, Sipos B, Maghnouj A, Labourier E, Hahn SA: MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene. 2007, 26: 4442-4452. 10.1038/sj.onc.1210228.

    Article  PubMed  Google Scholar 

  42. Bloomston M, Frankel WL, Petrocca F, Volinia S, Alder H, Hagan JP, Liu CG, Bhatt D, Taccioli C, Croce CM: MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA. 2007, 297: 1901-1908. 10.1001/jama.297.17.1901.

    Article  PubMed  Google Scholar 

  43. Pineau P, Volinia S, McJunkin K, Marchio A, Battiston C, Terris B, Mazzaferro V, Lowe SW, Croce CM, Dejean A: miR-221 overexpression contributes to liver tumorigenesis. Proc Natl Acad Sci USA. 2009, 107: 264-269. 10.1073/pnas.0907904107.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Murakami Y, Yasuda T, Saigo K, Urashima T, Toyoda H, Okanoue T, Shimotohno K: Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene. 2006, 25: 2537-2545. 10.1038/sj.onc.1209283.

    Article  PubMed  Google Scholar 

  45. Nikiforova MN, Chiosea SI, Nikiforov YE: MicroRNA expression profiles in thyroid tumors. Endocr Pathol. 2009, 20: 85-91. 10.1007/s12022-009-9069-z.

    Article  PubMed  Google Scholar 

  46. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM: Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA. 2004, 101: 2999-3004. 10.1073/pnas.0307323101.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Inomata M, Tagawa H, Guo YM, Kameoka Y, Takahashi N, Sawada K: MicroRNA-17-92 down-regulates expression of distinct targets in different B-cell lymphoma subtypes. Blood. 2009, 113: 396-402. 10.1182/blood-2008-07-163907.

    Article  PubMed  Google Scholar 

  48. Ciafre SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G, Negrini M, Maira G, Croce CM, Farace MG: Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun. 2005, 334: 1351-1358. 10.1016/j.bbrc.2005.07.030.

    Article  PubMed  Google Scholar 

  49. Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF, Lund E, Dahlberg JE: Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA. 2005, 102: 3627-3632. 10.1073/pnas.0500613102.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tili E, Croce CM, Michaille JJ: miR-155: on the crosstalk between inflammation and cancer. Int Rev Immunol. 2009, 28: 264-284. 10.1080/08830180903093796.

    Article  PubMed  Google Scholar 

  51. Christensen BC, Moyer BJ, Avissar M, Ouellet LG, Plaza SL, McClean MD, Marsit CJ, Kelsey KT: A let-7 microRNA-binding site polymorphism in the KRAS 3' UTR is associated with reduced survival in oral cancers. Carcinogenesis. 2009, 30: 1003-1007. 10.1093/carcin/bgp099.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L, D'Urso L, Pagliuca A, Biffoni M, Labbaye C, Bartucci M, Muto G, Peschle C, De Maria R: The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med. 2008, 14: 1271-1277. 10.1038/nm.1880.

    Article  PubMed  Google Scholar 

  53. Mercatelli N, Coppola V, Bonci D, Miele F, Costantini A, Guadagnoli M, Bonanno E, Muto G, Frajese GV, De Maria R, Spagnoli LG, Farace MG, Ciafre SA: The inhibition of the highly expressed miR-221 and miR-222 impairs the growth of prostate carcinoma xenografts in mice. PLoS ONE. 2008, 3: e4029-10.1371/journal.pone.0004029.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ma L, Teruya-Feldstein J, Weinberg RA: Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007, 449: 682-688. 10.1038/nature06174.

    Article  PubMed  Google Scholar 

  55. Huang Q, Gumireddy K, Schrier M, le Sage C, Nagel R, Nair S, Egan DA, Li A, Huang G, Klein-Szanto AJ, Gimotty PA, Katsaros D, Coukos G, Zhang L, Pure E, Agami R: The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol. 2008, 10: 202-210. 10.1038/ncb1681.

    Article  PubMed  Google Scholar 

  56. Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D, Diehn M, Liu H, Panula SP, Chiao E, Dirbas FM, Somlo G, Pera RA, Lao K, Clarke MF: Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell. 2009, 138: 592-603. 10.1016/j.cell.2009.07.011.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Schetter AJ, Nguyen GH, Bowman ED, Mathe EA, Yuen ST, Hawkes JE, Croce CM, Leung SY, Harris CC: Association of inflammation-related and microRNA gene expression with cancer-specific mortality of colon adenocarcinoma. Clin Cancer Res. 2009, 15: 5878-5887. 10.1158/1078-0432.CCR-09-0627.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tanaka M, Oikawa K, Takanashi M, Kudo M, Ohyashiki J, Ohyashiki K, Kuroda M: Down-regulation of miR-92 in human plasma is a novel marker for acute leukemia patients. PLoS ONE. 2009, 4: e5532-10.1371/journal.pone.0005532.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ng EK, Chong WW, Jin H, Lam EK, Shin VY, Yu J, Poon TC, Ng SS, Sung JJ: Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut. 2009, 58: 1375-1381. 10.1136/gut.2008.167817.

    Article  PubMed  Google Scholar 

  60. Ji X, Takahashi R, Hiura Y, Hirokawa G, Fukushima Y, Iwai N: Plasma miR-208 as a biomarker of myocardial injury. Clin Chem. 2009, 55: 1944-1949. 10.1373/clinchem.2009.125310.

    Article  PubMed  Google Scholar 

  61. Wu H, Lima WF, Zhang H, Fan A, Sun H, Crooke ST: Determination of the role of the human RNase H1 in the pharmacology of DNA-like antisense drugs. J Biol Chem. 2004, 279: 17181-17189. 10.1074/jbc.M311683200.

    Article  PubMed  Google Scholar 

  62. Elmen J, Lindow M, Silahtaroglu A, Bak M, Christensen M, Lind-Thomsen A, Hedtjarn M, Hansen JB, Hansen HF, Straarup EM, McCullagh K, Kearney P, Kauppinen S: Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res. 2008, 36: 1153-1162. 10.1093/nar/gkm1113.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S, Lindholm M, Hedtjarn M, Hansen HF, Berger U, Gullans S, Kearney P, Sarnow P, Straarup EM, Kauppinen S: LNA-mediated microRNA silencing in non-human primates. Nature. 2008, 452: 896-899. 10.1038/nature06783.

    Article  PubMed  Google Scholar 

  64. Tsuda N, Ishiyama S, Li Y, Ioannides CG, Abbruzzese JL, Chang DZ: Synthetic microRNA designed to target glioma-associated antigen 1 transcription factor inhibits division and induces late apoptosis in pancreatic tumor cells. Clin Cancer Res. 2006, 12: 6557-6564. 10.1158/1078-0432.CCR-06-0588.

    Article  PubMed  Google Scholar 

  65. Tsuda N, Mine T, Ioannides CG, Chang DZ: Synthetic microRNA targeting glioma-associated antigen-1 protein. Methods Mol Biol. 2009, 487: 435-449. full_text.

    PubMed  Google Scholar 

  66. Ebert MS, Neilson JR, Sharp PA: MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 2007, 4: 721-726. 10.1038/nmeth1079.

    Article  PubMed  Google Scholar 

  67. Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, Marion P, Salazar F, Kay MA: Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature. 2006, 441: 537-541. 10.1038/nature04791.

    Article  PubMed  Google Scholar 

  68. Zeng Y, Yi R, Cullen BR: Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J. 2005, 24: 138-148. 10.1038/sj.emboj.7600491.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Chang K, Elledge SJ, Hannon GJ: Lessons from Nature: microRNA-based shRNA libraries. Nat Methods. 2006, 3: 707-714. 10.1038/nmeth923.

    Article  PubMed  Google Scholar 

  70. Koh CG, Zhang X, Liu S, Golan S, Yu B, Yang X, Guan J, Jin Y, Talmon Y, Muthusamy N, Chan KK, Byrd JC, Lee RJ, Marcucci G, Lee LJ: Delivery of antisense oligodeoxyribonucleotide lipopolyplex nanoparticles assembled by microfluidic hydrodynamic focusing. J Control Release. 2009, 141: 62-69. 10.1016/j.jconrel.2009.08.019.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Grunweller A, Hartmann RK: Locked nucleic acid oligonucleotides: the next generation of antisense agents?. BioDrugs. 2007, 21: 235-243. 10.2165/00063030-200721040-00004.

    Article  PubMed  Google Scholar 

  72. Costinean S, Zanesi N, Pekarsky Y, Tili E, Volinia S, Heerema N, Croce CM: Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci USA. 2006, 103: 7024-7029. 10.1073/pnas.0602266103.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Nie K, Gomez M, Landgraf P, Garcia JF, Liu Y, Tan LH, Chadburn A, Tuschl T, Knowles DM, Tam W: MicroRNA-mediated down-regulation of PRDM1/Blimp-1 in Hodgkin/Reed-Sternberg cells: a potential pathogenetic lesion in Hodgkin lymphomas. Am J Pathol. 2008, 173: 242-252. 10.2353/ajpath.2008.080009.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Sampson VB, Rong NH, Han J, Yang Q, Aris V, Soteropoulos P, Petrelli NJ, Dunn SP, Krueger LJ: MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res. 2007, 67: 9762-9770. 10.1158/0008-5472.CAN-07-2462.

    Article  PubMed  Google Scholar 

  75. Akao Y, Nakagawa Y, Kitade Y, Kinoshita T, Naoe T: Downregulation of microRNAs-143 and -145 in B-cell malignancies. Cancer Sci. 2007, 98: 1914-1920. 10.1111/j.1349-7006.2007.00618.x.

    Article  PubMed  Google Scholar 

  76. Dixon-McIver A, East P, Mein CA, Cazier JB, Molloy G, Chaplin T, Andrew Lister T, Young BD, Debernardi S: Distinctive patterns of microRNA expression associated with karyotype in acute myeloid leukaemia. PLoS ONE. 2008, 3: e2141-10.1371/journal.pone.0002141.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Negrini M, Calin GA: Breast cancer metastasis: a microRNA story. Breast Cancer Res. 2008, 10: 203-10.1186/bcr1867.

    Article  PubMed  PubMed Central  Google Scholar 

  78. He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S, Calin GA, Liu CG, Franssila K, Suster S, Kloos RT, Croce CM, de la Chapelle A: The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA. 2005, 102: 19075-19080. 10.1073/pnas.0509603102.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, Taccioli C, Volinia S, Liu CG, Alder H, Calin GA, Menard S, Croce CM: MicroRNA signatures in human ovarian cancer. Cancer Res. 2007, 67: 8699-8707. 10.1158/0008-5472.CAN-07-1936.

    Article  PubMed  Google Scholar 

  80. Chen YT, Kitabayashi N, Zhou XK, Fahey TJ, Scognamiglio T: MicroRNA analysis as a potential diagnostic tool for papillary thyroid carcinoma. Mod Pathol. 2008, 21: 1139-1146. 10.1038/modpathol.2008.105.

    Article  PubMed  Google Scholar 

  81. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M: Silencing of microRNAs in vivo with 'antagomirs'. Nature. 2005, 438: 685-689. 10.1038/nature04303.

    Article  PubMed  Google Scholar 

  82. Bijsterbosch MK, Rump ET, De Vrueh RL, Dorland R, van Veghel R, Tivel KL, Biessen EA, van Berkel TJ, Manoharan M: Modulation of plasma protein binding and in vivo liver cell uptake of phosphorothioate oligodeoxynucleotides by cholesterol conjugation. Nucleic Acids Res. 2000, 28: 2717-2725. 10.1093/nar/28.14.2717.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Bijsterbosch MK, Manoharan M, Dorland R, Van Veghel R, Biessen EA, Van Berkel TJ: bis-Cholesteryl-conjugated phosphorothioate oligodeoxynucleotides are highly selectively taken up by the liver. J Pharmacol Exp Ther. 2002, 302: 619-626. 10.1124/jpet.302.2.619.

    Article  PubMed  Google Scholar 

  84. Cerritelli SM, Frolova EG, Feng C, Grinberg A, Love PE, Crouch RJ: Failure to produce mitochondrial DNA results in embryonic lethality in Rnaseh1 null mice. Mol Cell. 2003, 11: 807-815. 10.1016/S1097-2765(03)00088-1.

    Article  PubMed  Google Scholar 

  85. Brummelkamp TR, Bernards R, Agami R: A system for stable expression of short interfering RNAs in mammalian cells. Science. 2002, 296: 550-553. 10.1126/science.1068999.

    Article  PubMed  Google Scholar 

  86. Miyagishi M, Taira K: U6 promoter-driven siRNAs with four uridine 3' overhangs efficiently suppress targeted gene expression in mammalian cells. Nat Biotechnol. 2002, 20: 497-500. 10.1038/nbt0502-497.

    Article  PubMed  Google Scholar 

  87. Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, Elbashir S, Geick A, Hadwiger P, Harborth J, John M, Kesavan V, Lavine G, Pandey RK, Racie T, Rajeev KG, Rohl I, Toudjarska I, Wang G, Wuschko S, Bumcrot D, Koteliansky V, Limmer S, Manoharan M, Vornlocher HP: Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature. 2004, 432: 173-178. 10.1038/nature03121.

    Article  PubMed  Google Scholar 

  88. Shi W, Alajez NM, Bastianutto C, Hui AB, Mocanu JD, Ito E, Busson P, Lo KW, Ng R, Waldron J, O'Sullivan B, Liu FF: Significance of Plk1 regulation by miR-100 in human nasopharyngeal cancer. Int J Cancer. 2009.

    Google Scholar 

  89. Takeshita F, Patrawala L, Osaki M, Takahashi RU, Yamamoto Y, Kosaka N, Kawamata M, Kelnar K, Bader AG, Brown D, Ochiya T: Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol Ther. 2009, 18: 181-187. 10.1038/mt.2009.207.

    Article  PubMed  PubMed Central  Google Scholar 

  90. O'Connell RM, Chaudhuri AA, Rao DS, Baltimore D: Inositol phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci USA. 2009, 106: 7113-7118. 10.1073/pnas.0902636106.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Liu G, Friggeri A, Yang Y, Park YJ, Tsuruta Y, Abraham E: miR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses. Proc Natl Acad Sci USA. 2009, 106: 15819-15824. 10.1073/pnas.0901216106.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Corsten MF, Miranda R, Kasmieh R, Krichevsky AM, Weissleder R, Shah K: MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res. 2007, 67: 8994-9000. 10.1158/0008-5472.CAN-07-1045.

    Article  PubMed  Google Scholar 

  93. Tazawa H, Tsuchiya N, Izumiya M, Nakagama H: Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA. 2007, 104: 15472-15477. 10.1073/pnas.0707351104.

    Article  PubMed  PubMed Central  Google Scholar 

  94. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM: A microRNA polycistron as a potential human oncogene. Nature. 2005, 435: 828-833. 10.1038/nature03552.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

SV is supported by AIRC (IG 8588), PRIN MIUR 2008 and Regione Emilia Romagna PRRIITT BioPharmaNet grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Volinia.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

MG, MES and SV mined the literature and discussed and wrote the manuscript.

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.

Authors’ original file for figure 1

Authors’ original file for figure 2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galasso, M., Elena Sana, M. & Volinia, S. Non-coding RNAs: a key to future personalized molecular therapy?. Genome Med 2, 12 (2010). https://doi.org/10.1186/gm133

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/gm133

Keywords